Duality Theorems in the Multivariable Iwasawa Theory of Number Fields

نویسنده

  • William G. McCallum
چکیده

1. Introduction. Let K be a number field, let p be an odd prime, and let K ∞ /K be an extension containing all p-power roots of unity whose Galois group Γ is isomorphic to Z

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

Riemann-Roch Theorem, Stability and New Zeta Functions for Number Fields

In this paper, we introduce new non-abelian zeta functions for number fields and study their basic properties. Recall that for number fields, we have the classical Dedekind zeta functions. These functions are usually called abelian, since, following Artin, they are associated to one dimensional representations of Galois groups; moreover, following Tate and Iwasawa, they may be constructed as in...

متن کامل

On the Equivariant Main Conjecture of Iwasawa Theory

Refining results of David Burns and Cornelius Greither, respectively Annette Huber and Guido Kings, we formulate and prove an equivariant version of the main conjecture of Iwasawa theory for abelian number fields.

متن کامل

A note on symmetric duality in vector optimization problems

In this paper, we establish weak and strong duality theorems for a pair of multiobjective symmetric dual problems. This removes several omissions in the paper "Symmetric and self duality in vector optimization problem, Applied Mathematics and Computation 183 (2006) 1121-1126".

متن کامل

یادداشتی بر دوگانی AdS/CFT

We study duality of field theories in (d+1) dimensional flat Euclidean space and (d+1) dimensional Euclidean AdS space for both scalar the and vector fields. In the case of the scalar theory, the injective map between conformally coupled massless scalars in two spaces is reviewed. It is shown that for vector fields the injective map exists only in four dimensions. Since Euclidean AdS space is e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002